
Autom Softw Eng (2014) 21:345–372
DOI 10.1007/s10515-013-0136-9

Cloud refactoring: automated transitioning
to cloud-based services

Young-Woo Kwon · Eli Tilevich

Received: 31 October 2012 / Accepted: 26 September 2013 / Published online: 8 October 2013
© Springer Science+Business Media New York 2013

Abstract Using cloud-based services can improve the performance, reliability, and
scalability of a software application. However, transitioning an application to use
cloud-based services is difficult, costly, and error-prone. The required re-engineering
effort includes migrating to the cloud the functionality to be accessed as remote
cloud-based services and re-targeting the client code accordingly. In addition, the
client must be able to detect and handle the faults raised in the process of invoking
the services. As a means of streamlining this transitioning, we developed a set of
refactoring techniques—automated, IDE-assisted program transformations that elim-
inate the need to change programs by hand. In particular, we show how a programmer
can extract services, add fault tolerance functionality, and adapt client code to invoke
cloud services via refactorings integrated with a modern IDE. As a validation, we
have applied our approach to automatically transform two third-party Java applica-
tions to use cloud-based services. We have also applied our approach to re-engineer a
suite of services operated by General Electric to use cloud-based resources to better
satisfy the GE business requirements.

Keywords Cloud computing · Services · Refactoring · Service extraction ·
Fault-tolerance · Program transformation

1 Introduction

One of the foundations of cloud computing is Software-as-a-Service (SaaS), a com-
puting paradigm in which clients access a piece of remote, cloud-hosted functional-
ity through a public interface. To take advantage of cloud-based services, centralized
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software applications must be re-engineered, so that a portion of their functionality
is hosted in the cloud. One may want to replace an existing application functionality
with an equivalent cloud-based service for a variety of reasons, both business and
technical. Replacing a locally implemented functionality with a remotely maintained
service reduces the maintenance burden. A service provider can more effectively im-
prove quality and reduce costs by leveraging the economies of scale, when the same
service is used by multiple clients. A service may have access to computing resources
that are superior to the resources of a local machine. Services often conglomerate
other services, thus offering additional benefits. For example, if a service persists
user data, it is likely to offer backup and restoration facilities not common outside of
large server infrastructures.

Using cloud-based services has become a common avenue for leveraging remote
computing resources, with the benefits that include reduced costs, increased automa-
tion, greater flexibility, and enhanced mobility (Buyya et al. 2009). Despite all the
benefits of leveraging cloud-based resources, transitioning a centralized application
to effectively use remote services requires extensive changes to the application’s
source code. In addition, the possibility of partial failure requires that proper fault
handling functionality be added to any application that invokes services remotely. As
a result, programmers manually transition applications to use cloud-based services,
changing code in difficult, costly, and error-prone ways. Therefore, there is great po-
tential benefit in automating these changes and making the automation available to
the software engineering community.

A popular technique for automating common program transformations is called a
refactoring. Defined generally, a refactoring is a semantics preserving program trans-
formation performed under programmer control (Fowler 1999). In other words, refac-
toring is automated: a programmer determines if a refactoring should be performed
and then engages a refactoring engine that transforms the code automatically. In this
article, we advocate the vision of using refactoring as a means of facilitating the tran-
sitioning to cloud-based services. We argue that transitioning an application to take
advantage of cloud-based services preserves the application’s semantics in the sense
that the overall functionality does not change. Executing some functionality in the
cloud does not change the semantics from the end user’s perspective.

This article presents a set of refactoring techniques that facilitate the process of
transforming centralized applications to use cloud-based services. These techniques
automate the program transformations required to (1) render portions of functionality
of a centralized applications as cloud-based services and re-target the application to
access the services remotely; (2) handle failures that can be raised in the process of
invoking a cloud-based service; and (3) switch a service client to use an alternate,
equivalent cloud-based service. These refactoring techniques—collectively named
Cloud Refactoring—have been concretely implemented in the context of the Eclipse
IDE and added to its refactoring engine.

To validate Cloud Refactoring, we applied its constituent refactoring techniques to
transform two centralized, monolithic Java applications to use cloud-based services.
We also applied Cloud Refactoring to re-engineer a commercial application used
by General Electric (GE) to use cloud-based services in an effort to demonstrate
how refactoring can help realize the GE strategic vision to take advantage of cloud
computing.
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Our results indicate that Cloud Refactoring can be a powerful tool for the program-
mer charged with the task of transitioning a centralized application to one that uses
cloud-based services. Not only can Cloud Refactoring transform code with a high
degree of automation, but it can also properly account for the demands of distributed
execution. Thus, Cloud Refactoring represents a robust and pragmatic approach that
can reduce maintenance costs and increase programmer productivity.

The rest of this article is structured as follows. Section 2 motivates our approach
and then introduces the main technologies discussed in this article. Section 3 de-
scribes the new refactoring techniques. Section 4 reports our experiences of applying
Cloud Refactoring to third-party applications. Section 5 compares our approach to
the existing state of the art. Finally, Sect. 6 presents future work directions and con-
cluding remarks.

2 Motivation and technical background

In this section, we introduce an example that motivates this research and then provide
a technical background our approach uses.

2.1 Motivating example

Consider JNotes,1 a third-party diary and project management application written to
run on a single desktop machine. Our goal is to refactor JNotes into a cloud-based ap-
plication, with the server part deployed on a remote server and the client part accessed
from a mobile device. This transformation offers several advantages. All the JNotes
documents and calendars can be saved at the remote server, whose file system can
be regularly backedup and replicated, so that data consistency will not suffer from a
failure of the client’s file system. Furthermore, through a simple change in server de-
ployment, JNotes can be made into a collaborative application, with multiple clients
sharing the same server components.

A major technical impediment to realizing the transitioning outlined above is that
maintenance programmers have to change the application’s source code by hand.
JNotes is a typical centralized application that comprises a collection of Java classes.
Splitting JNotes into the service and client parts, deploying the services in the cloud,
and having the parts communicate with each other reliably can quickly turn into a
complex programming undertaking. Furthermore, the resulting cloud-based applica-
tion is likely to contain software imperfections, commonly introduced when manipu-
lating code by hand.

Although software frameworks have been introduced to ease rendering classes
as Web services, the classes must adhere to a rigid set of architectural conventions.
Thus, it is unlikely that these frameworks can help transition arbitrary classes to Web
services. As an example, consider JAX-WS Expert Group (2006), a framework that
represents a significant industry effort to simplify the development and deployment
of Web services. With JAX-WS, a programmer can export a standard Java class as

1http://memoranda.sourceforge.net.

http://memoranda.sourceforge.net
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a Web service by annotating the class with @WebService and the class’s methods
with @WebMethod. A code generation tool that comes with JAX-WS reads these
annotations and creates all the required supporting harness to exposes and deploy the
annotated methods as XML-based Web services.

However, this service extraction model simply renders existing methods as Web
services without any consideration for the resulting performance and reliability. To
ensure good performance and high reliability, the classes that are to become Web
services may need to be restructured first. For example, a service may need to use
only a subset of the class’s fields, thus requiring splitting the class into client and
server partitions.

Consider moving class FileStorage to the cloud as a means of saving all the
JNotes documents in a shared cloud storage. With JAX-WS, the programmer can
transform the entire class with all its methods into a Web service. Unfortunately, this
“all or nothing” inflexible distribution model may fall short of meeting the needs
of realistic applications. For example, some functionality in FileStorage per-
tains to local file paths, and as such should not be moved to the cloud. That is, the
functionality tied to the client environment cannot be moved. More specifically, the
programmer needs to split methods storeResourcesList(...) and open-
ResourcesList(...) from the rest of the class before it is transformed into a
remote service.

The refactoring approach that we advocate here enables the required level of flexi-
bility when transforming classes into remote services. Our Extract Service refactoring
takes as input a class name and a set of methods that are to be rendered as a remote
service. This refactoring then transforms the given methods into remote service meth-
ods, leaves the remaining methods on the client, rewrites all communication between
the original and remote methods into remote service calls.

Because centralized and distributed applications have different failure modes, sim-
ply rendering a subset of a centralized application remote does not preserve the se-
mantics. Distributed applications are subject to partial failure, in which its different
components (client, server, or network) may fail independently from each other. Al-
though one cannot handle all the possible failures in a distributed application, some
failures have well-known handling strategies. Thus, to better preserve the original
execution semantics, the Extract Service refactoring also adds client-side fault toler-
ance functionality as specified by the programmer. For example, the programmer may
specify that an unsuccessful attempt to reach a service be repeated a given number of
times. In our approach, the programmer can specify and configure the fault tolerance
strategies to apply by means of an XML-based domain-specific language.

Finally, a service application may need to use more than one service implementa-
tion for a given functionality. For example, in the case when one service implemen-
tation is not available, the client should switch to using a different service, whose
method interface is different from that used by the original service implementation.
Thus, the client code will need to be adapted to use different service interfaces. The
Adapt Service Interface refactoring automates the transformations required to be able
to switch the client to using an equivalent service exposed through an incompatible
service interface.
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2.2 Technical background

In the following discussion, we provide an overview of the cloud and service com-
puting technologies used in this article.

2.2.1 Cloud computing and services

Cloud computing provisions resources on-demand through three main virtualiza-
tion approaches: (1) infrastructure virtualization—provisioning computing power,
storage, and machine (e.g., Amazon EC2); (2) platform virtualization—provisioning
operating systems, application servers, and databases (e.g., Amazon S3); (3) software
virtualization—provisioning complete Web-based applications (e.g., Salesforce.com).
The main benefits of cloud computing include elasticity, scalability, and availabil-
ity. From the software development perspective, however, taking advantage of cloud
computing requires that the programmer follow a strict set of architectural and design
guidelines.

Service Oriented Architecture (SOA) provides uniform access to a variety of com-
puting resources across multiple application domains. Loosely coupled services may
be co-located in the same address space or be geographically dispersed across the
network. Among the software engineering advantages of services are strong encap-
sulation, loose coupling, ease of reusability, and standardized discovery. In addition,
due to the strong separation between service interfaces and implementations, service
developers have the flexibility to mix any middleware platforms and applications as
well as to switch service infrastructures without affecting service clients. It is these
desirable software engineering properties that made SOA a widely used paradigm for
realizing cloud computing solutions.

2.2.2 OSGi framework as a cloud computing platform

Open Service Gateway Initiative (OSGi) (OSGi Alliance 2011)—a service imple-
mentation and provisioning infrastructure—has been embraced by numerous indus-
try and research stakeholders, organized into the OSGi Alliance.2 As a service plat-
form, OSGi can render any Java class as a service bundle. OSGi manages published
bundles, allowing them to use each other’s services through public interfaces. OSGi
manages the lifecycle of a bundle (i.e., moving between install, start, stop, update,
and delete stages) and allows it to be added and removed at runtime.

OSGi has made substantial inroads into the domain of cloud computing. Some en-
terprises have adopted OSGi as the platform for realizing their private clouds (Pare-
mus Ldt 2008). In light of these developments, a consortium of major industry and
academia stakeholders has issued the Request for Proposal (RFP) 133 (OSGi Al-
liance 2010), which codifies how OSGi should be leveraged as a platform for cloud
computing.

2Open-source OSGi implementations include Apache Felix (http://felix.apache.org/site/index.html) and
Knopflerfish (http://www.knopflerfish.org). Among large commercial OSGi projects are the Spring Frame-
work (http://www.springsource.org/) and the Eclipse IDE (http://www.eclipse.org/equinox/).

http://Salesforce.com
http://felix.apache.org/site/index.html
http://www.knopflerfish.org
http://www.springsource.org/
http://www.eclipse.org/equinox/
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3 Our approach: cloud refactoring

The goal of our approach is to alleviate the code transformation hurdles involved in
adapting existing applications to take advantage of cloud-based services. To reduce
development efforts/costs and increase programmer productivity, we have expressed
as refactorings several common program transformations that programmers perform
when adapting applications to use cloud-based resources. Although our approach is
not fully automatic, programmers only determine if the source code should be trans-
formed. The actual transformations are performed by a refactoring engine. In the
following discussion, we first give an overview of our approach and then detail its
individual parts.

3.1 Approach overview

Our approach focuses on those common program transformations occurring when
using cloud-based services that are well-amenable to be expressed as a refactoring.
In particular, we focus on three software re-engineering scenarios. One scenario in-
volves moving some of a centralized application’s functionality to the cloud. The
second scenario involves adding fault tolerance functionality to the client to handle
the faults raised during the invocation of a cloud-based service. The third scenario
involves switching an application to use an alternate cloud-based service exposed
through a different service interface.

Figure 1 shows how the constituent components of our approach fit together. The
two main parts of our approach are The Recommendation Engine and The Refactoring
Engine. The recommendation engine uses static and dynamic program analysis tech-
niques to infer class coupling; this optional component can inform the programmer
about which classes can be converted into a cloud-based service. The two refactoring
techniques of the refactoring engine are intended be used à la carte. By integrating
the engine with the Eclipse IDE, our approach makes it possible to use the new refac-
toring techniques indistinguishably from the existing ones. Furthermore, some of the
existing, widely used refactoring techniques can be quite useful for applications that
use cloud-based services. For example, Extract Service refactoring can be used to
move a method to a class prior to converting that class to a cloud-based service.

Fig. 1 Migrating to Cloud-Based Services via Cloud Refactoring
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3.2 Service recommendation

To make sure that moving functionality to the cloud does not render the application
unusable due to exploding latency costs, programmers should use service compo-
nents rather than individual objects as a distribution boundary. Because few existing
applications consist of service components, programmers should first ensure that an
intended service is not tightly coupled with the rest of the application. For exam-
ple, they can apply a Façade pattern that exposes some tightly coupled functionality
through a crude-grained interface.

Nevertheless, it may be difficult to determine which functionality is a good can-
didate to be exposed as a cloud-based service. To that end, our approach provides
a recommender tool that computes the coupling metrics for all the classes in an ap-
plication and then displays the classes that are least tightly coupled. Accessing the
functionality represented by these classes from a remote cloud-based service should
impose only a limited performance penalty on the refactored application.

Figure 2 shows the process diagram for identifying classes that can be converted
into cloud-based services. Our approach leverages two recommendation mechanisms:
profiling- and clustering-based recommenders. The profiling-based recommender en-
gages a static program analysis and runtime monitoring to collect program informa-
tion. By combining the class coupling metrics collected through both static analysis
and runtime monitoring, the recommendation algorithm then suggests a subset of
an application that can be transformed to cloud-based services. The profiling-based
recommender sorts application classes based on their execution duration and fre-
quencies, so that the programmer can know what classes are computation-intensive
and how frequently they are accessed. The clustering-based recommender clusters
classes with similar functionality, thus identifying class clusters whose functional-
ity can be naturally exposed as a cloud-based service. Because the clustering-based
recommender groups classes based on their functionality, the programmer can avoid
duplicating a functionality in the cloud by selecting candidates for cloud-based ser-
vice from different clusters.

Fig. 2 Service recommendation process
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Note that these recommendation mechanisms are provided as a tool that can in-
form the programmer about the properties of the applications about to undergo a
refactoring. The programmer is ultimately responsible for deciding which classes
should be transformed into cloud-based services and even if the transformation
should take place to begin with. This design choice is in line with the automated
nature of our refactoring techniques. In the following discussion, we describe our
two recommendation mechanisms in detail.

3.2.1 Profiling-based recommendation

In essence, the recommender strives to find a distribution strategy that would not
render the application unusable due to the drastically increased latencies of invoking
tightly coupled methods across the network. Because the recommender only takes
the coupling metrics into consideration, it cannot produce a recommendation that is
guaranteed to always exhibit a superior performance. Other factors, such as business
logic and system resources used, can impact the performance drastically. As a result,
the programmer can only use the recommender as a tool to explore the coupling
metrics of the refactored application rather than as an absolute arbiter that determines
which functionality is to be extracted into remote services.

Figure 3 shows our service recommendation algorithm that operates on a class
relation graph. Given a graph, the algorithm calculates a service utility value for each
class in the program, a rank that expresses how fit a class is to be rendered as a cloud-
based service. Specifically, the algorithm uses the service utility function defined as
follows:

F(i) =
∑

i∈edges

{
Wα × Ti

MAX(T0, . . . , Tn)
+ Wβ × Ni

MAX(N0, . . . ,Nn)

}

INPUT: A class relation graph, CRG
OUTPUT: A set CS = {c1, c2, . . . , cn} of possible remote classes

classes ←− calculateUtility(CRG);
destinations ←− edgesOutOf(class);

while (destinations �= ∅) do
class ←− destinations.next();
utility ←− class.getUtility();
coupling ←− class.getCoupling();
if (utility ≥ util_threshold && coupling ≤ coup_threshold) then

CS.add(class);
end if
destinations ←− edgesOutOf(class);

end while

Fig. 3 Profiling-based service recommendation algorithm
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where N , T , and W denote execution number, execution time, and weight to each
measurement metric, respectively. If Wα is larger than Wβ , classes related to business
logic will be suggested. Conversely, if Wβ is larger than Wα , frequently accessed
classes will be suggested. Then, we defined our own coupling metrics as follows:

CP(i, j) = CC(i, j) + CR(i, j) = 1

#of hops
+

∑
(ei ∩ ej )∑
ei + ∑

ej

where CP, CC and CR denote coupling, class connectivity, and class relation values.
Class connectivity, CC, denotes how the given two classes are closely connected. If
class xi has lower hops to go class xj , they are strongly connected. If xi and xy are
directly connected, CC(i, j) is 1. Otherwise, CC(i, j) = 1

#of hops . Class relation, CR,
denotes how the given two classes are related. If class xi creates, reads, writes, and
invokes only class xj , class xi is tightly related to class xj . CR is computed using
the number of in/out edges from the given class to other classes. Then, the algo-
rithm described traverses the graph from the root to the leaf nodes and then suggests
cloud-based service candidates based on the calculated service utility values. Based
on this suggestion, programmers can then choose classes that are suitable candidates
for cloud migration.

3.2.2 Spectral clustering-based recommendation

The second recommender clusters related classes together. In recent years, spectral
clustering has become one of the most widely used clustering algorithms. Spectral
clustering techniques make use of the spectrum of the similarity matrix of the data
to perform dimensionality reduction for clustering in fewer dimensions. Given a set
of data points x1, . . . , xn and similarity S(i, j) between all pairs of data points xi

and xj , the similarity matrix is defined as S. If the similarity S(i, j) between the
corresponding data points xi and xj is positive, two vertexes are connected. The
similarity matrix is computed as follows:

S(i, j) = CC(i, j) + CR(i, j) + D(i, j) + L(i, j) + T (i, j)

where CC, CR, D, L and T denote class connectivity, class relation, class distance,
library usage, and type similarity, respectively. We use the same formula to compute
CC and CR, which are defined above. Class distance, D(i, j) is calculated using
the Levenshtein distance algorithm (Levenshtein 1966). If xi and xj have the same
package name, these classes are considered more similar to each other that classes
in different packages. With respect to library usage, L shows how the relationship
between two classes in terms of the similarity of the libraries they use. Using the
same library indicates a similarity in functionality. If xi and xj use the same libraries,
their L(i, j) is 1. Otherwise, their L(i, j) is 0. Finally, type similarity, T , denotes
the similarity of classes in terms of their types. If the classes implement the same
interfaces or inherit from the same super class, their T (i, j) is 1. Otherwise, their
T (i, j) is 0.

Figure 4 shows the clustering-based service recommendation algorithm, which is
parameterized with a class relation graph. First, the graph’s similarity matrix is con-
structed. Since each node of the graph has method/class information, the similarity
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INPUT: A class relation graph, CRG
OUTPUT: A set CS = {c1, c2, . . . , cn} of possible remote classes

clusterNum ←− 2; //initialize the number of clusters
while (true) do

SIM ←− constructSimilarityMatrix(CRG);
cluster ←− buildCluster(SIM, clusterNum);

if (cluster = ∅) then exit; end if

while (cluster �= ∅) do
class ←− cluster.next();
if (class is accessed from other clusters) then

CRG.remove(class);
CS.add(class);

end if
end while

clusterNum ←− clusterNum + 1; //increase the number of clusters
end while

Fig. 4 Clustering-based service recommendation algorithm

between each pair of classes is calculated according to their similarity metrics. Then,
a recursive spectral clustering algorithm continuously partitions the similarity matrix
until it reaches the base case (the partition size equals 1).

3.2.3 Constraints on extracting cloud-based services

Not all classes can be easily migrated into remote, cloud-based services. Various con-
straints make it impossible to refactor some classes for cloud-based execution. These
constraints pertain to the use of local resources, parameter passing, and serialization.
Classes that make use of local resources, such as databases, disk files, and sensors
cannot be moved to be executed by a different host. In our refactoring approach, we
assume that the programmer is aware of such local resource usage and would not try
to migrate the affected classes to the cloud. Our refactoring techniques can only pass
by-copy parameters, which includes primitive and read-only parameters. The classes
whose methods contain other types of parameters cannot be transformed into cloud-
based services; our recommenders identify and exclude such classes. Finally, OSGi
requires that non-primitive remote method parameters be serializable and attempts to
automatically serialize them.

Next, we describe two refactoring techniques that form the foundation of Cloud
Refactoring: (1) Extract Service and (2) Adapt Service Interface.
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3.3 Cloud refactoring—(1) Extract service

Extract Service refactoring automates the program transformations required to trans-
form regular classes into remote services. A typical Extract Service refactoring per-
forms the following four program transformations: (1) rewrite a class making all its
methods into remote service methods, (2) partition class methods into service meth-
ods and regular methods, rewriting all the communication between the two into re-
mote service calls, (3) re-target all clients of the original class to access its func-
tionality in the cloud by means of remote service calls, and (4) add fault handling
functionality to client code.

3.3.1 Transforming program code to extract services

Figure 5 shows local classes A and B can be transformed by means of the Extract Ser-
vice refactoring, so that B becomes a fault tolerant cloud-based service. At the server
side, class B is exposed via a generated interface IB and class B becomes wrapped
into an instance of class WrapperB. The exposed service interface IB can be in-
voked via standard service protocols (e.g., HTTP-SOAP, REST, etc). At the client
side, class A imports the service via interface IB, with the original class B at the
client being replaced with a generated proxy class. This example demonstrates the
transformation of all the methods in a class into cloud-based services. If only a sub-
set of the methods are to be transformed into services, additional transformations are
necessary.

To split a class, the refactoring engine takes as input its name and then either a
set of fields or methods to move to the cloud. If the refactoring input is specified by
means of fields, the selected fields and the methods accessing them are moved to the
cloud. If the refactoring input is specified in terms of methods, the selected methods
and the fields accessed by them are moved to the cloud. Figure 6 shows how the

Fig. 5 Extract Service refactoring—service transformation and client redirection
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refactoring engine splits class B to redirect all the invocations to class B to the cloud-
based service interface IB and the local object LB. Figure 7 shows an automatically
generated proxy class, which redirects all the invocations to class B to the cloud-based
service interface IB and the local object LB.

3.3.2 Handling service faults

Whether some functionality is accessed locally or remotely across the network should
not change the application’s functionality if not for the presence of partial failure. Un-
like in a centralized application, components of cloud-based services can fail inde-
pendently, making such failures difficult to diagnose and handle. Such failures must
be handled effectively not only to ensure the overall application utility and safety, but
to preserve the semantics of the original centralized applications. Thus, any refactor-
ing technique that separates any functionality to be accessed remotely must take the
issue of remote failures into consideration. In our approach, the Extract Service refac-
toring automatically adds well-known fault tolerance strategies configured through a
domain-specific language.

Because it would be impossible to handle all possible errors, our refactoring ap-
proach focuses on well-known strategies for handling common faults, such as net-
work volatility, service outages, and internal service errors. The generated fault toler-
ance functionality includes both detection and handling. A fault can be detected via
timeout mechanism, exception handling, or runtime execution monitoring. Then, the

Fig. 6 Splitting a proxy into two parts

Fig. 7 Generating a proxy class



Autom Softw Eng (2014) 21:345–372 357

Fig. 8 Overview of fault handling

detected faults should be properly handled to keep continuing the required function-
ality. Figure 8 shows these fault-handling procedures. First, a service administrator
needs to provide fault tolerance descriptions written in Fault-Tolerance Description
Language (FTDL) (Edstrom and Tilevich 2012; Kwon and Tilevich 2011), a domain-
specific language we have developed earlier for expressing fault handling strategies.
These descriptions parameterize a fault handling component that detects the specified
faults and then counteracts their effect by executing the specified handling strategies.
The refactoring engine inserts all the required fault handling code into proxy classes.

3.3.3 Fault tolerance description language

One of the key novelties of our refactoring approach is using a domain-specific lan-
guage to configure a refactoring engine to synthesize fault tolerance functionality.
In our previous work (Edstrom and Tilevich 2012; Kwon and Tilevich 2011), we
explored how remote services can be made resilient against failures using domain-
specific languages—Hardening Policy Language (HPL) (Kwon and Tilevich 2011)
and Fault Tolerance Description Language (FTDL) (Edstrom and Tilevich 2012). In
this work, we combined the features of these two languages—language constructs
from FTDL and a runtime system from HPL— to create a refactoring transforma-
tion that automatically adds fault tolerance functionality. Figure 9 shows how FTDL
is used by the refactoring infrastructure. The FTDL design has striven to combine
expressiveness and ease of use. The specific design goals of FTDL have included:
Expressiveness—a programmer should be able to express any kind of fault easily,
with the resulting code being easy to understand, maintain, and evolve; Extensibil-
ity—it should be possible to integrate existing fault tolerance strategies with FTDL
strategies; Platform Independence—FTDL strategies should be service platform in-
dependent, with the same strategy capable to counteract a fault raised by any service
implementation.

3.3.4 Fault tolerance strategies

Traditionally, fault handling functionality in services computing tends to follow
well-defined patterns. To render services reliable, representative approaches repli-
cate SOAP web services (Dialani et al. 2002; Fang et al. 2007; Liang et al. 2003),
introduce transactional processing (Liu et al. 2010), and add fault handling code
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Fig. 9 FTDL constructs

to server and client sides of a service-oriented application (Santos et al. 2005;
Zheng and Lyu 2010).

Our approach focuses on client-side fault handling for the faults caused by net-
work volatility, service outages, and internal service errors. The first step in handling
a fault is detecting it. The fault conditions can be detected via timeout mechanism, ex-
ception handling, or runtime execution monitoring. In the context of service-oriented
applications, the following fault tolerance strategies are used quite commonly:

Retry The strategy that is arguably employed most widely is Retry, which, for a
given number of times, reattempts to invoke a service in response to a failure.

Sequential Another common strategy is Sequential, which is also known as pas-
sive replication. This strategy iterates through different endpoints of a service when
encountering a failure. For instance, when experiencing a timeout in response to in-
voking the service endpoint at a.com/foo, b.com/foo can be invoked next. This
strategy, thus, increases the probability that some invocation will finally succeed. The
term passive replication refers to the fact that this strategy does not kick in until a fail-
ure occurs.

Parallel An example of a more complex strategy is Parallel, which actively
replicates a service, to invoke endpoints concurrently as a mechanism to counter-
act potential service unavailability. For example, both endpoints a.com/foo and
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b.com/foo would be invoked simultaneously. As a form of speculative parallel
execution, this strategy proceeds with the first successfully executed request.

Composite Because a single strategy may not be sufficient, software designers often
combine multiple strategies. For example, all the heretofore described strategies can
be combined into composite strategies.

3.3.5 Generating fault handling code

Figure 10 shows the fault handling functionality in a generated proxy class. Specifi-
cally, this proxy handles all the raised exceptions by passing them to method no-
tify() in class FaultHandler. The fault handler is our light-weight fault-
handling runtime that can execute fault-handling strategies. The runtime can execute
both the standard fault tolerance strategies as well as the combinations of thereof.
The standard strategies include retry, sequential, and parallel. These strategies can
be combined in arbitrary ways into composite strategies by writing a simple FTDL
script. To specialize fault handling even further, one can implement any required
fault-handling strategy by implementing interface FaultListener. The fault tol-
erance strategies can be reused across applications and can serve as building blocks
for custom strategies.

The lightweight runtime system depicted in Fig. 11 consists of a fault diagnosis
module and a strategy manager. The fault diagnosis module catches raised exceptions
or failures. The strategy manager associates exceptions with fault tolerance strategies.
In response to detecting an exception, the manager initiates the handling strategy as
configured by a given FTDL script. A strategy implementation is simply a sequence
of corrective actions whose execution counteracts the effect of experiencing the fault.

Fig. 10 Automatically generated fault handling code
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Fig. 11 Fault tolerant runtime system

These actions are implemented as part of a library. In our prior work, we have demon-
strated the effectiveness of this approach to improve the reliability of OSGi-based
systems (Kwon and Tilevich 2011; Kwon et al. 2009).

3.4 Cloud refactoring—(2) Adapt service interface

Cloud-based services expose their functionality through a set of public interfaces.
It is also common that the same business functionality is offered by more than one
service provider. For various business and technical reasons, an application may need
to choose between multiple service providers for the same functionality. For example,
multiple services may need to be consulted to check whether the information they
provide is consistent. Multiple service implementation can also be used for fault-
tolerance purposes.

Services providing equivalent functionality are likely to have different service in-
terfaces. One option is to treat the invocation of different equivalent services as unre-
lated. This way, the client code required to invoke the services is replicated for each
service. Another option is to systematically adapt one service’s client-side interface
bindings for another service interface. This adaptation is automated by means of the
Adapt Service Interface refactoring.

The Adapt Service Interface refactoring automates the transformations required
to apply the adapter pattern. Figure 12 shows how one service’s client bindings can
be adapted to use another service. As the first step, a programmer should specify
the differences between the original and adapted service interfaces. That is, the pro-
grammer uses our refactoring browser to map interface method names to each other.
Based on this method name mapping, the refactoring engine generates a skeletal im-
plementation of the required adapter. The programmer can then fill in this skeletal
implementation with the adaptation logic. For example, parameters can be simply
reordered, missing parameters provided, and extra parameters omitted.

As a specific example, consider switching the remote service invocations of inter-
face IB described in Sect. 3.3 to interface NewIB:
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Fig. 12 Procedure of service adaptation

Fig. 13 Automatically generated proxy class for service adaptation

public interface NewIB {
String newFoo(int, int , int );

}

To switch services, our approach requires that the programmer provides the original
and adapted service interfaces. If the adapted service interface is not available locally,
the refactoring engine can automatically create one from a WSDL document. Because
most web services describe their operations as a WSDL document, a Java interface
describing the operations can be retrieved.

As mentioned above, programmers parameterize the refactoring engine by map-
ping to each other the original and adapted service interfaces. Figure 13 shows how
the adaptation code switches the old service invocations to another service’s imple-
mentation. Figure 14 shows the automatically generated adapter class. In this ex-
ample, method foo() is being redirected to method newFoo(). The refactoring
engine generates an adapter class AdapterB which is a singleton. If the adapted
service methods differ in terms of their parameter numbers or types, the program-
mer needs to write code to adapt the parameters and/or return value. This part of the
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Fig. 14 Generating an adapter class from interface differences

Fig. 15 Service refactoring tool’s components

approach is manual, as parameter adaptation is highly application-specific and thus
cannot be automated.

3.5 Implementing cloud refactoring

Figure 15 shows the main components of the refactoring tool, which were devel-
oped using several state-of-the-art software tools and libraries such as Eclipse plug-
ins, OSGi, and Soot Java analysis framework. The refactoring tool consists of three
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components—(1) GUI, (2) recommendation engine, and (3) refactoring engine. The
GUI part was implemented within the Eclipse-IDE’s refactoring menus, so that a
programmer can easily modify our refactoring and extend the refactored application
within the Eclipse-IDE. The recommendation engine was implemented using a static
program analysis framework—the Soot Java analysis framework, which manipulates
and optimizes Java bytecode. The static analyzer and trace analyzer compute rela-
tionships between classes and the service recommender suggests service candidates
via the editors and wizards of the eclipse IDE. Lastly, the refactoring engine has a
series of code generators including proxy/wrapper generators for remote communi-
cations, interface generator for exposing services, adapter generator for switching a
service interface.

3.6 Discussion

Next we discuss some of the advantages and limitations of using refactoring to tran-
sition applications to use cloud-computing resources.

3.6.1 Advantages

By automating the required program transformations, a refactoring is more likely to
preserve the correctness of a modified program than when a programmer modifies the
code by hand. Our cloud refactoring techniques also generate new code used by the
modified code. For example, our refactoring engine generates several kinds of proxy
classes used at the client. Generating code automatically also helps preserve pro-
gram correctness. Our recommendation engine also informs the programmer about
the parts of the centralized program that can be moved to the cloud while minimizing
the incurred performance overhead. Our runtime library features several fault toler-
ance mechanism implementations that can be used out of the box, thereby increasing
the probability that the resulting application will be capable of handling partial fail-
ure.

3.6.2 Limitations

A refactoring may not be a proper approach for transforming all kinds of software
applications to cloud-based services. First, transforming tightly coupled applications
without incurring a significant performance overhead may require deep architectural
changes that are not supported by our refactoring techniques. Ensuring good perfor-
mance requires that remote communication be crude-grained and infrequent. In ad-
dition, cloud-based communication is inherently unidirectional: client talks to server
but not vice versa. If the original application does not follow this communication
pattern, its architecture needs to be changed before our refactoring techniques can be
applied.

Second, to improve accuracy, the recommendation systems require special
application-specific parameters. Based on the accuracy of the provided parameters,
the recommendation system will show different results. Therefore, the programmer
can experiment with different parameters to obtain a recommendation that is most
aligned with the business requirements in place.
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Third, our refactoring techniques do not make any provision for a situation when a
newly extracted cloud service is used by multiple clients. Then the application logic
would have to be modified accordingly to ensure a consistent and efficient access by
multiple clients.

Lastly, our fault handling strategies cannot cover all the possible failure cases.
In some scenarios, the programmer may need to implement some failure handling
strategy by hand, outside the framework provided by our refactoring infrastructure.

3.7 Motivation for cloud refactoring

An important question is what motivates enterprises to move software components
to execute remotely in the cloud, thus necessitating the cloud refactoring techniques
presented here. One motivation for leveraging cloud resources is to improve perfor-
mance efficiency by processing large volumes of data in parallel (e.g., using Hadoop).
However, this work is motivated by a different set of business cases for using cloud-
based resources.

For many business applications, using remote cloud-based services is inevitable,
even if the resulting performance efficiency would remain the same or even deterio-
rate. For example, some shared functionality may need to be shared between multiple
clients (e.g., a local accounting component that has to be shared between multiple fi-
nancial applications). As another example, some functionality may need to be moved
into the cloud to take advantage of the cloud provider’s data backup and replication
services (e.g., a local database-dependent component can be moved to a cloud service
along with its database files to guarantee long-term data integrity). Finally, compa-
nies may consolidate some replicated functionality and expose it as a cloud service
to reduce the software maintenance efforts. Because services are exposed through
a public service interface, the service’s implementation can change at will without
perturbing its clients, as long as the service interface remains fixed.

All these scenario represent a clear need for the cloud refactoring techniques dis-
cussed in this article, even though the refactored (i.e., cloud-based) versions of these
applications are unlikely to show any increase in performance efficiency. However,
unless the invocation of cloud services is in the critical performance paths of these
applications, the overall performance impact of cloud refactoring is likely to remain
insignificant. From the business perspective, migrating services to the cloud can re-
duce the overall software development costs and can even enable companies to break
into new markets, as software-as-a-product (SaaP) can be easily reused and repur-
posed.

4 Evaluation

To evaluate the applicability of our Cloud Refactoring techniques, we applied them
to two third-party applications to help transition them to cloud-based execution.
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Table 1 The experimental results

Name # classes # suggested
remote
services

# selected
remote
services

# adaptable
remote
services

ratio

Crypto 5 4 4 3 80 %

Compress 7 3 3 0 43 %

Dictionary 7 3 3 1 43 %

JAligner 39 8 5 1 12.8 %

Barecue 56 1 1 0 1.7 %

JNotes 164 9 8 0 4.8 %

PMD 597 27 3 0 0.5 %

Weka 1243 14 7 0 0.5 %

4.1 Micro benchmark: clustering-based recommendation

To evaluate the effectiveness of our recommendation approach, we applied the
clustering-based recommendation to seven third-party applications and one our own
application.

– Crypto (Dieckmann and Hölzle 1999): Java implementation of the Unix crypt util-
ity.

– Compress (Dieckmann and Hölzle 1999): Java implementation of the Unix com-
pression utility.

– Dictionary: our own application using the Lucene search engine library3 to search
definitions, find synonyms, and suggest corrects for misspelled words.

– JAligner:4 an open source Java implementation for biological local pairwise se-
quence alignment.

– Barecue:5 an open source Java library to create barcodes.
– JNotes: an open source Java management tool for memos, events and projects.
– PMD:6 an open source Java program for potential problems like bugs, dead code,

suboptimal code, overcomplicated expressions, and duplicate code.
– Weka (Hall et al. 2009): an open source Java data mining software implementing a

collection of machine learning algorithms.

Table 1 shows the benchmark results. Each column represents the number classes,
the number of suggested remote services, the number of selected remote services,
and the number of adaptable remote services. The first refactoring suggested possible
remote services, and we manually selected appropriate remote services. The all sug-
gested classes can be cloud-based services, however, we selected appropriate classes
for the reason of the performance, call-by-reference, and meaning of features. Then,

3http://lucene.apache.org/java/docs/index.html.
4http://jaligner.sourceforge.net.
5http://barbecue.sourceforge.net.
6http://pmd.sourceforge.net.

http://lucene.apache.org/java/docs/index.html
http://jaligner.sourceforge.net
http://barbecue.sourceforge.net
http://pmd.sourceforge.net
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the last column shows how many refactored services can be adopted to the third-party
services. We found few public Web services through public Web service repositories
and manually investigated how the refactored services can be adapted to the new
services.

Based on the micro benchmark result, we selected two applications to show refac-
toring procedures. In the next discussion, we show two case studies—JAligner and
JNotes.

4.2 Case study I—DNA sequence alignment—JAligner

As the first case study, we applied our refactoring techniques to JAligner—a third-
party bioinformatics pairwise sequence alignment tool written to run as a standalone
application on a single machine. JAligner takes as input two DNA sequences and
computes their similarity metrics. We successfully refactored the application to use
a fault tolerant cloud-based service and then switched the alignment functionality to
use an equivalent third-party service.

4.2.1 Extracting remote service

While the clustering-based recommender suggested 8 classes as potential remote ser-
vices, the profiling-based recommender suggested 4 classes:

– Class Commons: returns basic informations about the application.
– Class SequenceParser: parses the given DNA sequence and returns a Se-
quence object.

– Class SmithWatermanGotoh: aligns two DNA sequences.
– Class Example: returns example DNA sequences.

Although all the recommended classes can be refactored to cloud-based services,
in this study we selected only one class—class SmithWatermanGotoh, which im-
plements the main functionality of JAligner. For performance reasons, classes Com-
mons and SequenceParser should not be transformed into cloud-based services.
Moreover, because class Example forms its own cluster, it should not be moved to
the cloud. As the first step, the refactoring engine generated interface ISmithWa-
termanGotoh, which is exposed by underlying middleware, and class Wrapper-
SmithWatermanGotoh, a wrapper class of SmithWatermanGotoh, as well
as some OSGi specific files. The following code snippet shows the automatically
generated Java interface, which is exposed through remote OSGi services7 After the
refactoring engine finishes transforming all the code, the newly created service im-
plementation can be deployed in the cloud and accessed remotely.

public interface ISmithWatermanGotoh {
public Alignment align (

Sequence s1, Sequence s2, Matrix m, float o, float e );
}

7The services are exposed through Apache CXF-DOSGi.
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Fig. 16 FTDL description to handle network volatility

For the client execution, the refactoring engine re-targets client code to the cloud-
based service. To that end, it generates a proxy class—SmithWatermanGotoh and
OSGi specific files such as remote service configuration files. The generated interface
is used for importing the exposed Web service. Through this refactoring, the client is
wrapped into a standard OSGi bundle and then uses the Smith–Waterman alignment
service over the network. Figure 16 shows the FTDL description to handle network
volatility.

4.2.2 Adapt service interface

We switched the extracted through refactoring remote service—Smith-Waterman
alignment service—to a third-party Web service provided by European Bioinformat-
ics Institute (EBI8). EBI provides several bioinformatics Web services, including lo-
cal and global alignment services. We selected Waterman-Eggert algorithm and
then adapted the client to use this service.

Figure 17 shows the WSDL document that describes the Web service specifi-
cation. First, based on this WSDL document, we created a Java interface Water
and its return/argument types such as class RunAndWaitFor and RunAndWait-
ForResponse. Figure 18 depicts the automatically generated new service interface
and other necessary classes. Then, the refactoring generates the skeleton of adapter
classes. The only manual part of this refactoring is for the programmer to write
code that maps different parameters and return values (e.g., class Sequence and
class SeqInput). As a result, when an unchanged existing client invokes the
old service interface, the adapter intercepts the invocation and redirects it to the new
service.

4.3 Case study II—JNotes

As the second case study, we selected JNotes, our motivating example application.
We refactored JNotes to used cloud-based services by means of Extract Service. As

8http://www.ebi.ac.uk/soaplab/.

http://www.ebi.ac.uk/soaplab/
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Fig. 17 WSDL contract of the EBI’s service

Fig. 18 Generated interface and classes

discussed in Sect. 2, we moved class FileStorage to the cloud by splitting it
into two classes. In this example, we left resource saving functionality at the local
machine and moved other functionality to the server. Figure 19 shows a proxy class
that splits the original class into remote and local parts.

4.4 GE portfolio analysis service

We demonstrate how our approach can benefit real companies that want to take ad-
vantage of cloud computing. We applied the Extract Service refactoring to Portfolio
Analysis Tool, a real-world application developed by GE Global Research Center
and GE Energy to analyze world economy scenarios and predicts how they may af-
fect their customers’ billing and costs. The application was developed using standard
Web technologies that included the Spring framework and Java servlets.

In particular, Portfolio Analysis Tool (1) calculates billing and costs using hun-
dreds of parameters that are maintained through a DBMS, (2) provides several
complex financial components which are computation-intensive functionality, and
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Fig. 19 Generated proxy class

(3) contains several common functionality that can be reused across multiple appli-
cations. Therefore, moving some key components of this application to the cloud
would simplify maintenance—the infrastructure (i.e., a Web server, an application
server, a DBMS, etc.) does not need to be maintained separately for each installation.
Moreover, commonly accessed services can be effectively reused.

The recommendation tool of the Extract Service refactoring suggested several
cloud-based services that can be extracted from the original application. Then, we
used our refactoring engine to extract cloud-based services, with the server compo-
nents deployed in a private cloud environment and the client code transformed to
access the cloud-based services remotely.
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5 Related work

The presented Cloud Refactoring techniques are related to program partitioning, soft-
ware clustering, migrating application to services, and fault handling techniques.
Next, we compare and contrast our techniques to the most relevant approaches in
each of these categories.

One line of research has explored coarse grained program partitioning. The pro-
grammer, by means of a GUI, designates different parts of a centralized application,
typically at a class or object granularity, to run on different network nodes. The re-
sulting distribution specification then parameterizes a compiler-based tool that au-
tomatically rewrites the centralized application for distributed execution. To intro-
duce distribution, a partitioning tool may need to both change the structure of the
application (e.g., to introduce a proxy indirection) and add middleware functionality
(e.g., to replace local calls with remote ones). In the Java world, recent automatic
partitioning tools include Addistant (Tatsubori et al. 2001), Pangaea (Spiegel 2002),
and J-Orchestra (Tilevich and J-Orchestra 2002). Addistant and J-Orchestra partition
programs at a class granularity; Pangaea can partition at the individual object level.
J-Orchestra addresses the challenges of partitioning programs safely in the presence
of unmodifiable code that comes as part of their runtime systems.

Several prior research efforts aim at decomposing software systems into subsys-
tems using clustering techniques (Mitchell and Mancoridis 2006). The Bunch tool
(Mitchell and Mancoridis 2006) uses a variety of clustering algorithms (e.g., hill
climbing, genetic, etc.) to modularize existing systems; it extracts modules based
on their dependence graph and calculates the resulting modularity quality. Cluster-
ing can be based on structural data (e.g., dependence graphs) and non-structural data
(e.g., names, comments, behavior, etc.) (Andritsos and Tzerpos 2005). Combining
structural and non-structural clustering can improve the resulting modularity (An-
dreopoulos et al. 2007).

Much research has gone into decomposing the large, legacy systems into sub sys-
tems by assistance of the above clustering techniques. Such decomposition was per-
formed for better understanding to the systems or maintenance for very large systems.
However, in recent research, there was an attempt to adopt data mining techniques for
partitioning into distributed applications or service oriented applications, including
RuggedJ (McGachey et al. 2009). RuggedJ adopted a classification techniques which
determines classes’ types and locates them distributed nodes such as server/client.

In addition, our approach is related to migrating legacy systems toward objects
(Lucca et al. 1997) and services (Canfora et al. 2008). The module dependence graph
has recently been shown to be effective at guiding the migration toward services
(Li and Tahvildari 2006); loosely-coupled modules become service components. In
addition, a model-based approach has been proposed to extract UML from legacy
code and to use proxy wrappers as service interfaces (Marchetto and Ricca 2009).

Commonly used approaches to recover from failure include termination
(Sidiroglou et al. 2005), restarting (Sullivan and Chillarege 1991), micro-rebooting
(Candea and Fox 2001), and checkpoint-restart (King et al. 2005). Although tradi-
tionally such approaches have been integrated with system design, our approach can
expose them as a fault strategy configured through FTDL. Therefore our approach
can increase the resiliency against faults even further.
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6 Conclusion

In this article, we have presented Cloud Refactoring, a set of semantics preserving
transformations that can help migrate a centralized application to using cloud-based
services. We realized Cloud Refactoring in the context of a modern IDE, enhancing
its refactoring engine. Cloud Refactoring comprises two main refactoring techniques:
Extract Service and Adapt Service Interface. The Extract Service refactoring renders
a portion of a centralized application’s functionality as a remote cloud-based service,
rewriting the client code and enhancing it with the required fault-tolerance strate-
gies. The Adapt Service Interface refactoring automates the transformations needed
to switch a service client to use an alternate, equivalent cloud-based service. We have
evaluated Cloud Refactoring by transforming third-party applications to cloud-based
services, including an application used by General Electric. Our experiences indi-
cate that refactoring can become a valuable tool in the toolset of software developers
charged with the challenges of migrating applications to take advantage of cloud-
based resources.

Acknowledgement GE Global Research has provided realistic cloud migration scenarios that motivated
some of the refactoring techniques discussed in the article. This research is supported by the National
Science Foundation through the Grant CCF-1116565.
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