
0018-9162/14/$31.00 © 2014 IEEE Published by the IEEE Computer Society JANUARY 2014 75

Green IT

Cloud-Based
Execution to Improve
Mobile Application
Energy Efficiency
Eli Tilevich and Young-Woo Kwon, Virginia Tech

Cloud offloading—a popular energy optimization technique—executes
a mobile application’s energy-intensive functionality via a cloud-
based server. To maximize efficiency, systems must determine the
functionality to offload at runtime, which will require innovation
in both automated program transformation and systematic runtime
adaptation.

T he growing complexity
of mobile application
functionality poses
increasing concerns

for device battery capacity
(K. Pentikousis, “In Search of
Energy-Efficient Mobile Network-
ing,” IEEE Comm. Magazine,
vol. 48, no. 1, 2010, pp. 95-103).
Recent research has focused on
cloud offloading as a possible
technique for improving mobile
application energy efficiency. The
concept is relatively simple: when
a mobile application identifies
some functionality as “hot” (that
is, energy intensive), it transforms
to a distributed application and
offloads the required data to a
cloud server, which executes the
hot functionality and then trans-
fers back the results, thereby
saving battery power for the
mobile device.

However, most offloading
schemes fail to consider the energy
required for network transfer, which
can sometimes negate any energy
savings gained from offloading.
Because mobile network conditions
vary, the decision whether or not
offloading will save energy must
occur dynamically at runtime and
requires an immediate cost-benefit
analysis to determine whether the
energy saved by reducing local
processing exceeds the overhead
required for distributed processing.
This analysis is far from trivial due to
mobile hardware heterogeneity and
execution environment volatility, and
it must ultimately involve encapsu-
lating the functionality and exposing
it via clean programming abstrac-
tions. In other words, adaptive cloud
offloading requires innovation in
both program transformation and
runtime adaptation.

CURRENT LIMITATIONS
AND OPPORTUNITIES

In a typical mobile application,
network communication consumes
up to half the total energy budget.
Our studies of distributed pro-
gramming abstractions and energy
efficiency reveal that network
types and conditions can signifi-
cantly affect the energy required
for remote data transfer (Y.-W.
Kwon and E. Tilevich, “The Impact
of Distributed Programming
Abstractions on Application
Energy Consumption,” Information
and Software Technology, vol. 55,
no. 9, 2013, pp. 1602-1613). By con-
sidering these variables, mobile
computing researchers can create
adaptive cloud offloading mecha-
nisms that maximize the energy
saved by mobile applications run-
ning on a variety of devices over
dissimilar networks.

r1gre.indd 75 12/17/13 5:50 PM

 76 compUteR

Green IT

is rewritten to run the resulting ap-
plications accordingly, either on the
mobile device or in the cloud.

Adaptive multitarget
cloud offloading

Building on our prior research,
we next focused on increasing
energy savings by enhancing the
runtime system to make offload-
ing decisions in accordance with
the mobile device’s hardware setup
and the network’s characteristics,
and to make these decisions dy-
namically at runtime and adjust
them continuously in response to
fluctuations in the mobile execu-
tion environment (Y.-W. Kwon and
E. Tilevich, “Reducing The Energy
Consumption of Mobile Applica-
tions behind the Scenes,” Proc. 29th

IEEE Int’l Conf. Software Mainte-
nance [ICDCS 13], IEEE CS, 2013,
pp. 170-179). The programmer
annotates suspected energy
hotspots, and, after validating
programmer input, the mobile
application transforms into a
distributed application with local
and remote parts determined at
runtime, as required by the execu-
tion environment. An elaborate
checkpointing mechanism makes
postponing distribution until run-
time possible.

The runtime system controls the
adaptivity. It manages network con-
nections between client and server,
estimates the mobile device’s energy
consumption, identifies the offload-
ing strategy to follow, synchronizes
the transferred check-pointed state,
and provides resilience in the
case of network disconnections.
In essence, the runtime system
continuously monitors the energy
that each offloading candidate
program component consumes, at
the level of its constituent subcom-
ponents. Those subcomponents
whose cloud-based execution
would save the most energy for
the current execution environment
network are offloaded.

crucial in the event that the mobile
network connecting the device to
the cloud becomes disconnected.
Rather than split an execution into
local and remote partitions, our
approach efficiently replicates pro-
gram state to switch between local
and remote executions, which can
both reduce client energy consump-
tion and tolerate network outages.
When the network is operational,
energy-intensive functionality is
offloaded to the cloud server by
transferring only the program state
necessary for remote execution. Ef-
ficient check-pointing synchronizes
the program state between the local

and remote executions. In cases
when the network becomes discon-
nected during offloading, the remote
execution redirects to the mobile
device. Thus, while network outages
inhibit optimal energy use, they do
not make the application unusable.

Because transferring large data
volumes across the network can
consume more energy than is saved
by offloading, our second contri-
bution was a program analysis
technique that reduces the amount
of transferred state. This technique
leverages static program analysis
to determine whether the program
state changed during an offloading
operation. The analysis uses pro-
grammer annotations as input to
specify which methods are ex-
pected to be energy intensive. Based
on this input, the analysis identi-
fies the state to be transferred for
each offloading scenario. Finally,
the application’s binary bytecode

However, most current offload-
ing techniques are preset and so not
capable of adapting when an appli-
cation switches between mobile
networks with different character-
istics. Those that can adapt their
offloading mechanisms at runtime
have runtime systems custom-
tailored for individual research proj-
ects and so lack clear programming
interfaces; thus, they can’t be config-
ured, reused, or ported easily.

To maximize energy savings in
heterogeneous and volatile mobile
networks, cloud offloading schemes
must support adaptive offloading
strategies. Doing so without over-
burdening programmers requires
runtime mechanisms that properly
encapsulate the offloading logic
by including energy profiling and
network monitoring. Such runtime
functionality should be exposed
via intuitive programming abstrac-
tions that allow programmers to
express the adaptive logic of offload-
ing decisions, including all required
parameters.

REDUCING ENERGY
CONSUMPTION USING
CLOUD OFFLOADING

Here, we present our cloud
offloading research over the past
several years, focused primarily on
advancing various program analysis
and transformation techniques and,
more recently, on dynamic runtime
support.

Cloud offloading in the
presence of network
disconnections

Our first major work in cloud
offloading was a program trans-
formation approach that preserves
a mobile application’s ability to
execute locally, as it was originally
written (Y.-W. Kwon and E. Tilevich,
“Energy-Efficient and Fault-Tolerant
Distributed Mobile Execution,” Proc.
32nd Int’l Conf. Distributed Comput-
ing Systems [ICDCS 11], IEEE CS,
2012, pp. 586-595). This ability is

To maximize
energy savings
in heterogeneous
and volatile mobile
networks, cloud
offloading schemes
must support adaptive
offloading strategies.

r1gre.indd 76 12/17/13 5:50 PM

 JANUARY 2014 77

server. These energy optimizations
should be selectable on per-
application and per-user bases.

Runtime adaptation pro-
vides a highly promising
avenue for improving cloud

offloading effectiveness. Just as
important, this improved efficiency
does not need to come at the cost of
systematic software development
practices. We hope these insights
can help influence the research
agenda for optimizing future mobile
application energy efficiency in the
cloud.

Acknowledgment
The National Science Foundation sup-
ported this research through grant
CCF-1116565.

Eli Tilevich is an associate profes-
sor in Virginia Tech’s Department of
Computer Science. Contact him at
tilevich@cs.vt.edu.

Young-Woo Kwon is a PhD candi-
date in Virginia Tech’s Department
of Computer Science. Contact him at
ywkwon@cs.vt.edu.

changes in the execution environ-
ment without imposing undue
performance overhead. In our cur-
rent work, we are exploring how
runtime systems can unobtrusively
gather execution parameters,
including network and hardware
parameters such as delay, net-
work connection type, and CPU
frequency. Using these parameters
makes it possible to build a power-
ful adaptive system that can predict
how much energy a given cloud
offloading operation will consume.
The runtime system can correlate
previously obtained device- and
execution-specific values, using
network delay, connectivity
type, CPU frequency, and voltage
values to compute future energy
consumption.

Custom-tailored runtime
adaptation

In addition to automated
adaptations, mobile application pro-
grammers can implement custom
optimization strategies that exploit
the application’s business logic.
Integrating these custom-tailored
adaptations with the runtime
system can further improve cloud
offloading efficiency. A typical
custom-tailored optimization can
comprise well-known energy optimi-
zations for network communication,
including data compression, reduc-
ing the offloaded data’s size, and
selecting the easiest-to-reach remote

ADAPTIVE RUNTIME FOR
EFFICIENT AND SYSTEMATIC
CLOUD OFFLOADING

Systems design that provides pow-
erful runtime adaptivity to support
advanced cloud offloading mecha-
nisms will require innovation in a
number of areas. Because distributed
programming mechanisms define
the patterns distributed applications
use to transmit data across networks,
they significantly impact the energy
mobile applications consume. How-
ever, existing distributed runtime
systems can’t adapt execution pat-
terns flexibly to reduce energy con-
sumption when mobile applications
switch between dissimilar net-
works. Maximizing energy savings
requires tailoring runtime execution
to account for specific applications’
business logic; to support this kind of
customization, runtime systems need
programming abstractions that can
express energy optimization param-
eters and triggering strategies.

Programming abstractions
Runtime programming abstrac-

tions can minimize energy con-
sumption via advanced, dynamic
optimizations. Enabling these re-
quires innovation in expressiveness
and runtime support. Such abstrac-
tions let programmers write several
cloud offloading plans that can be
used under different runtime con-
ditions (accounting for network
latency, bandwidth, and volatility,
for example). At execution, the run-
time system automatically selects
an appropriate offloading plan and
switches dynamically among plans
in response to changes in the execu-
tion environment. Runtime systems
should be realized as ready-made,
reusable software components to
reduce the maintenance burden on
mobile application developers.

Runtime monitoring and
energy profiling

Runtime adaptation requires
careful monitoring of runtime

editor: Kirk cameron, Department of
computer Science, Virginia tech; greenit@
computer.org

 Selected CS articles and
 columns are available for free at
http://ComputingNow.computer.org.

r1gre.indd 77 12/17/13 5:50 PM

