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Abstract—To enhance current earthquake early warning
(EEW) systems, emerging technologies, including social
and mobile computing, have been the focus of much
attention. As smartphones have benefitted from significant
development over the last few years, it is now possible to
capture various kinds of motion using a smartphone’s sen-
sors, (e.g., accelerometer, GPS, etc.) including earthquake
motion. To that end, we developed smartphone software
to capture and backend analytics to determine whether
the motion captured by a smartphone is caused by an
earthquake or by human motion. In so doing, our goal is to
establish a new type of seismic network using smartphones
which enhance traditional seismic networks. In this paper,
we evaluated the use of smartphones as detection devices;
collected both human and simulated earthquake data using
the smartphones, and developed an algorithm to distin-
guish earthquakes from human activities. Our results show
that using our algorithms, a smartphone can not only be
used as a recording instrument, but also a highly accurate
earthquake detection tool. As a result, creating networks
of seismic sensors based on smartphones will enhance the
safety of communities vulnerable to earthquakes, world-
wide.

I. INTRODUCTION

Mobile phones, and smartphones in particular, have
achieved significant penetration world-wide. Although
there’s no shortage of consumer and business oriented
applications, only a relatively few applications have been
and are being developed for community service and
fewer still fully make use of the on-board sensors, rich
networking and the aggregate power of smartphones
when they’re networked.

One application of smartphones which takes advantage
of their individual and aggregate capabilities is being
developed by the University of California Berkeley,
Seismology Laboratory and Deutsche Telekom, Silicon
Valley Innovation Center. This application, MyShake,
captures sensor data from smartphones and uses an
Artificial Neural Network to classify that data. The
project’s goal is to setup an end-to-end smartphone
seismic network and enhance current earthquake early
warning (EEW) systems. Creating networks of seismic
sensors based on smartphones can enhance the safety of
communities vulnerable to earthquakes, world-wide.

The rest of this paper is structured as follows. Section
II introduces related work and defines the problem that
our approach aims at solving. Section III details our
approach and discusses how we evaluated our approach.
Section IV concludes this paper.

II. BACKGROUND

In this section, we first present the state-of-the-art
technologies and research for community services using
smartphones and special case studies in seismology.
Then, we discuss the problem that we are trying to solve
through fundamental research questions.

A. Related Work

Next, we present several recent technologies to detect
human activities and disasters as well as community
services using smartphones.



1) Human Activity Recognition: Smartphones, even
the lower priced models, boast significant network, pro-
cessing, memory, and communication capabilities. Their
OSes support multithreading and allow applications to
access on-board sensors including accelerometers, mag-
netometers, and GPS, enabling sophisticated software to
be developed for a wide variety of applications. Thus,
smartphones have become a powerful device for human
activity recognition.

Consumer smartphones can be programed to capture
the movements of the phone in three dimensions (x, y,
and z axis) for every preset time interval. Assuming that
a smartphone is attached to a human being (e.g., in the
back pocket of one’s pants), various human activities
such as running, walking, standing, sitting, lying down,
and going up and down the stairs, can be recognized by
analyzing the captured time series data [1], [2], [3].

The usual process starts from creating a training
set which consists of multiple labeled feature vectors.
For example, several volunteers perform a given activ-
ity while the smartphones in their pocket record the
acceleration data. Various features are extracted from
this acceleration data, and then labeled with the given
activity. After training a classifier using this training
set, various human activities can be detected simply by
classifying the new acceleration data into one of the
activity categories. Sun et al. trained a Support Vector
Machine classifier, which performed well with an F-1
score reaching between 91.5 and 93.1% in a natural
setting (e.g., a phone was put in the hip or the front
pocket of jeans in different orientation). The F-1 score
increased to 94.8% if a fixed pocket position was used
[1]. Bayat et al. trained five classifiers and compared
their performance of activity classification. The overall
accuracy rate was 91.15% [3]. These human activity
recognition technologies can be used to improve the
accuracy of earthquake detection.

2) Community Services using Smartphones: Today,
consumer smartphones and their applications are being
used to enhance our communites’ quality of life. For
example, in Europe, there are two mobile apps for
community service that include a Paris-based startup,
Tinbox [4], which is focused on charity donation, and
foodloop.net [5], a German startup, whose application is
aimed at minimizing food waste.

In the US, emergency support, disaster readiness and
response applications include e.g., MAPS [6] and FiRST
[7]. Sonoma County, California publishes a list [8]
of community service/emergency support applications,
and there’s even at least one medical flight emergency

support application [9] among the mix.
Again, in the US, the Association of Public-Safety

Communications Officials (APCO) International, in co-
operation with FirstNet and the Department of Com-
merce organized a workshop to begin to specify public
safety mobile application security requirements. A link
to the workshop summary is given below [10].

a) Disaster Early Warning: Although it is difficult
to predict natural catastrophes or man-made disasters
before they occur, many technologies, which detect and
warn of these disasters, have recently received much
attention. By analyzing Twitter messages about disaster
events, for example, it is possible to find warning signs
of imminent earthquakes or typhoons [11], [12]. Fur-
thermore, due to the significant development of mobile
hardware and software technologies, a smartphone has
become an important device for detecting and warning
such disasters [13], [14].

In the following discussion, we further present three
closely related projects: Quake-Catcher [15], Commu-
nity Seismic Network [16], and iShake [17], which
inspired our project MyShake.

b) The (Inspired) Model for Using SmartPhones as
Seismic Sensors: The Quake-Catcher [15] and Commu-
nity Seismic Network [16] are the most recent efforts
to detect earthquakes by utilizing low cost MEMS ac-
celerometers as seismic sensors. In these efforts, vol-
unteers are asked to host these sensors at residential
buildings across California, and around the world. iShake
[17] is a project that initiated at Berkeley which was
based on iPhones and provided the first proof of principle
that smartphone sensors, accelerometers in particular,
have the ability to capture earthquake motion. Berkeley
Seismological Lab continued this project to the Android
phones, and Deutsche Telekom joined the project follow-
ing that first proof of principle and developed Droidshake
(the previous version of MyShake), the android version
of the mobile application.

B. Fundamental Research Questions

While it’s far easier to develop a purpose-built seismic
sensor than to try and marshal the power of off-the-shelf
smartphones, the sheer number and global penetration of
smartphones and the relative costs of the devices raises
the following compelling questions:

Given that smartphones have sophisticated operating
systems, the requisite on-board accelerometers, magne-
tometers, and GPS, as well as powerful multi-network
capabilities, 1) can we develop a robust, reliable and
accurate application for earthquake quick detection, that
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Fig. 1. Approach overview.

won’t cripple the user’s phone by draining battery or
have other negative impacts on the user or her device,
and 2) can a smartphone network also support very
low latency communication between the smartphones
themselves and remote back end processing?

We think the answer is yes. And we set about demon-
strating this on Android-based consumer smartphones,
without special builds and without constraints on what
other applications are installed or also running. In the
future, we will look at developing that same functionality
on other OSes.

Although using consumer grade smartphones, under
the conditions above, makes them black boxes, as it
were, it also makes for a diverse sensor network allowing
smartphones from most OEMs and Carriers to be used.
Redundancy is built in because of the potentially large
numbers of the devices and also because of smart-
phone/network diversity.

III. APPROACH

In this section, we present our approach with particular
emphasis on the analysis of collected sensor data by
using Droidshake and later MyShake1 software. Specif-
ically, we have evaluated our approach through a series
of benchmarks and systematic results analysis. We, then
describe some of the implementation details.

A. Approach Overview

Figure 1 gives an overview of our approach. Our
MyShake system comprises mainly four components: 1)
smartphones, 2) a cloud-based system, 3) an application

1MyShake is the second version of the Android based smartphone
application. Droidshake was the initial version for that OS.

management system, and 4) an earthquake early warning
(EEW) system at UC Berkeley. Next, we briefly ex-
plain each component. First, smartphones keep track of
tremors and their locations using their sensors including
accelerometers, magnetometers, GPS, etc. and records
them locally. Second, the recorded sensor data are up-
loaded to the cloud-based system for further analysis.
Moreover, the application management system monitors
application usages, triggers detection algorithms, and
sets device-specific configurations. Lastly, the EEW sys-
tem is used as another earthquake detection source. Thus,
once the EEW system receives real earthquake warnings
from earthquake stations or other sources, it notifies such
warnings to the application management server, so that
all the smartphones automatically begin to record current
tremors. This is a new way to increase the likelihood of
collecting earthquake data.

B. Experimental Setup

The questions for earthquake detection are whether,
and to what degree, can smartphones capture earthquake
data from its on-board sensors, and whether we can
distinguish earthquakes from human activities. Due to
the difficulty of using live data (i.e., difficult to come
by because of the unpredictable nature of earthquakes),
the Richmond Field Station’s Shake Table was used to
generate high fidelity earthquake motion for our testing.
These shake table tests serves the purpose of both testing
the phones’ performance under large shaking and also
collecting data for training the algorithm.

The Shake Table at the Richmond Field is capable
of reproducing earthquake motion in 3 dimensions with
very high fidelity in both frequency and amplitude. This
allowed the accuracy of the smartphone accelerometers
to be measured and tested under realistic earthquake
loads and against a reference accelerometer. Smart-
phones from Samsung, LG, HTC, Motorola etc., running
Droidshake and MyShake software captured the shaking
motion for later analysis.

Pictured in Figure 2, are the smartphones being pre-
pared for the shake tests at the Richmond Field Station.
We also did noise floor tests to find the minimum noise
level of the phone itself. We placed the phones in a quiet
place and recorded one month’s worth of noise data.
This can show the sensitivity of the phones to the small-
est movement they can detect. During these tests, we
evaluated the sampling reliability and the sensor sample
reliability of the phones as well. These reliabilities are
key to the data collection process and detection accuracy.



Fig. 2. Smartphones being subjected to Earthquake load at the
Richmond Field Station’s Shake Table. The silver plate is to hold
the phone on the table, other phones not on the plate were placed
freely on the table.

We then had volunteers install our app on their phones
and collected daily human activity data when they nor-
mally used their phones.

After we collected data, we started to design our arti-
ficial neural network classifier to distinguish earthquakes
from human motion.

During the time we were analyzing the data, two
phones with our app running recorded the 2014 M6.0
Napa earthquake, which we will show in the following
section.

C. Experimental Results Analysis

In this section, we describe our experiments and
systematically analyze the experimental results, as well
as the earthquake data we recorded on our smartphones.

1) Sensitivity Comparison: Pictured above in Figure
3, is a comparison of accelerometer data captured by
our phones and compared to a reference accelerometer
(the first curve). The second curve was generated by
a smartphone that was fixed on the table and resistant
to the shaking. The third curve was generated from a
smartphone simply placed on the table and allowed to
move freely. It was sliding due to the strong shaking
motion. Note that all three preserve the frequency content
of the shaking wave, although the amplitude of the freely
moving phone is clipped at a certain value.

We also compared the smartphones’ sensitivity overall
against high- and low- earth background noise (The
curves labeled HNM and LNM, respectively, at the

Fig. 3. Smartphone’s accelerometer’s data and reference accelerome-
ter’s data captured on a one-dimensional shake table. The top graph is
the recording of the reference accelerometer on the table. The middle
and bottom graphs are from the phones fixed and allowed to move
freely on the table.

bottom), analyzed Earthquake data, and a MEMS ac-
celerometer built by HP. This is pictured in Figure 4. The
two noise floors recorded from smartphones are average
noise floor from phones released before 2013 (Nexus
One, Exhibit, Amaze, Double Play, Galaxy S3, Nexus
4) and released after 2013 (XperiaZ, Galaxy S4, MotoX,
HTC One, LG G2, Nexus 5), we can clearly see the trend
of improvement of the accelerometers in the more recent
phones.

The low noise background data represents, in some
sense, the sound of the earth at its quietest. The high
noise environment represents the sounds of the earth
nearer natural phenomena such as ocean waves, without
human induced vibrations. The HP MEMS is a sensitive
accelerometer developed for seismic imaging applica-
tions [18]. Earthquake signals within 10 km are depicted
by the dashed lines and labeled with their magnitude.

What the results in Figure 4 indicate is that smart-
phones’ accelerometers are capable of sensing earth-
quake motion, at a distance of 10km, and above a certain
magnitude. Most important, they are sensitive to shaking
waves across the frequency range that the earthquake
engineering community is interested in, namely: 0.1 Hz
to 10 Hz.

2) Sampling Reliability: Also key to the ability of
the smartphone to reliably collect data is its clock.
Both DroidShake and MyShake were run hundreds of
times for periods varying from several minutes to several
hours and overnight. The purpose was to measure the
smartphones’ ability to maintain a steady sampling rate



Fig. 4. Accelerometer sensitivity compared against high and low
earth background noise, a very high performance HP MEMS, and
captured earthquake data.

Fig. 5. Distribution of clock intervals around the 20msec sampling
rate used to collect data.

around our sampling frequency.
Although not all devices performed as well as the

MotoX1 in Figure 5, other smartphones had acceptable
stability, with newer devices showing improvement over
older ones.

3) Sensor Sampling Reliability: In addition to exam-
ining the clock sampling itself, we also looked at the
sensor output during times when we observed a small
(O (100ms)) jump between sequential time codes.

The plot depicted in Figure 6 shows the relative
stability of accelerometer data in terms of its clustering
around a small range of values in both the pre and post
jump state. By and large, the sensors remained stable
over time, yielding highly reliable results.

4) Behavioral Measurements: Using smartphones for
earthquake detection requires the ability to distinguish
between earthquake and human caused motion. We also
recruited student and staff volunteers to carry smart-

Fig. 6. Accelerometer sample data pre- and post- a 112 msec jump
in the sampling interval.

phones, engage in everyday activities including walk-
ing, running, riding busses and the like while running
DroidShake to capture those signals. Figure 7, shows the
output of the accelerometers while the volunteers were
moving. The figure shows a time slice of the three axial
components of acceleration and, as is clear, each activity
has different underlying patterns, which can be used as
a basis to distinguish earthquakes and human activities.

5) Classifier Results: Data captured by the Droid-
Shake and MyShake applications are communicated to
a back-end server, and then used to train the ANN algo-
rithm developed at UC Berkeley. The ANN is trained on
labeled behavioral and seismic data and then unlabeled
data are used to determine the degree to which the trained
ANN can discriminate and classify. For more details
of the algorithm, please refer to a follow up paper (in
preparation).

The results of the classification shown in the confusion
matrix, Figure 8 were based on an initial dataset from
7 human users and shake table data. The classification
success rate is over 99% on the testing dataset.

6) An Opportunistic Event: Although we can’t cap-
ture earthquake data at will, we were, in some sense,
fortunate to have been able to capture the 2014 Napa
Valley earthquake shaking on a smartphone running
MyShake. The smartphone was in Berkeley CA, some
38km distant from the epicenter, and was put freely on
a desk on a second floor apartment. The accelerometer
data is shown in Figure 9. Figure 10, shows the MyShake
data and data recorded on a USGS netquake station
[19] which was located about 1.2 km away from the



Fig. 7. Examples of accelerometer data captured from human movement.

Fig. 8. Confusion matrix for the classifier

smartphone.

D. MyShake Implementation

In this section, we present the MyShake system archi-
tecture that offers an energy-efficient earthquake detec-
tion framework.

1) System Architecture: First, MyShake keeps track
of tremors using accelerometers and GPS sensors and
then analyzes such tremors using two-stage triggering
algorithm. If the current movement is determined as
earthquake-related tremors, its network module sends the
recorded data and current data to the cloud-based detec-
tion system for further analysis. Furthermore, MyShake
periodically sends a heartbeat message to the application
management system for application usage information.

2) Two-Stage Triggering Algorithm: As energy effi-
ciency becomes an important software design considera-
tion, to reduce the impact of the algorithm on the battery,
we adopted a two-stage triggering mechanism.

The first level trigger is a simple STA/LTA (short
time average/long time average) algorithm [20]. The STA
monitors the sudden change of the signal, and the LTA
keeps the background level of noise. This algorithm
checks the ratio of the STA over the LTA of the signal,



Fig. 9. MyShake accelerometer data recorded from the 2014 Napa
Valley, CA M6.0 Earthquake

Fig. 10. Netquake station data compare with MyShake accelerometer
data from the 2014 Napa Valley, CA M6.0 Earthquake, showing here
is one horizontal component.

and triggers when the ratio is above certain threshold.
It is an efficient and accurate algorithm that reduces
the computation of the features for ANN when there
is no movement. Since the algorithm does not have any
complicated calculations, the real-time detection can be
performed in a fast and efficient way. Furthermore, the
algorithm is designed to find a sudden signal change that
is different from background noises, thereby enabling
an accurate detection[20]. The second level trigger algo-
rithm is the ANN we developed, and it only activates to
check the incoming data once the STA/LTA triggers. This
two level triggering algorithm will run in the background
on the users’ phones.

IV. CONCLUSION AND FUTURE WORK

A. Community-based Service Apps

A significant amount of data collection and analysis
have gone into establishing that a MyShake smartphone,
individually and in aggregate, when coupled with the
UCB ANN can be used as part of an EEW system.

The advance warning at Berkeley for the Napa Quake
was only 5 seconds using the current earthquake early
warning system. In the future we envision the advance
warning time will be longer when we have a dense
smartphone network as a supplement to the current EEW
system: sufficient time to find safety, alert hospitals and
first responders, begin safety procedures in factories and
industrial settings, and provide schools early notice.

In poorer economies whose geographies are prone to
seismic events in South America or Asia for example,
and whose governments may not be able to afford the
very high cost of the traditional seismic stations for
EEW, the need for and benefits of a smartphone EEW
are that much greater.

Earthquakes are a global phenomenon, affecting mil-
lions of people and costing billions of dollars. Smart-
phones have an additional advantage in addition to those
described above: their greatest penetration is in areas of
greatest population density, putting them at the center
of where early detection would do the most good. And,
because we are demonstrating that smartphones can be
used for early detection as part of an EEW system, the
cost of a seismic network can be significantly reduced,
putting seismic detection within the reach of poorer
economies.

B. Next Steps

We have currently completed a small ‘friends and fam-
ily’ beta test at UC Berkeley to assess the performance
of additional smartphones and their ability to provide
accurate data and our ability to provide analysis and
detection. The data from that are still being analyzed.
We are, among other things, implementing the ANN
algorithm on the phone itself, so that if the phone senses
some movement, the application can decide if the current
movement is an earthquake. We are also looking into
further improvements to the network protocol to reduce
data communication latency to the maximum degree
possible.
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